Skip to content
  • About
  • Academy
    • Studia School
    • Studia Tutoring
    • Studia Consultation
    Ready to elevate your education?
    Contact us
  • Workshop
  • Care
  • E-Shop
  • Resources
  • Blog
  • Home
  • About
  • Studia School
  • Studia Tutoring
  • Studia Consultation
  • Studia Workshop
  • Studia Care
  • Shop
  • Resources
  • Blog
Platform
Fe-mail Fe-phone Fe-map-pin Fe-instagram
Platform

REVISION NOTES

IGCSE Edexcel Further Pure Mathematics

1.2 The Quadratic Function

edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_014_the quadratic function-14.png

A quadratic function has the form ax2 + bx + c where a, b and c are constants and a is not 0.

1.2.1 The manipulation of quadratic expressions

Type 1: Factorisation

Factorisation involves writing the quadratic expression of x2+ bx + c in the form (x + p)(x + q).

edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_001_factorising-01.png

Type 2: Completing the Square

Completing the Square involves writing the expression x2 + bx + c in the form (x + p)2 + q.

edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_002_completing the square (a = 1)-02.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_003_completing the square (a = 1)-03.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_004_completing the square (a = 1)-04.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_005_completing the square (a ≠ 1)-05.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_006_completing the square (a ≠ 1)-06.png

1.2.2 The roots of a quadratic equation

Method 1: Solve by Factorisation

Step 1: Factorise the quadratic equation [See 1.2.1].

Step 2: Equate to 0 (Null Factor Law).

Step 3: Find the roots or solution.

Method 2: Solve by Completing the Square

Step 1: Complete the Square [See 1.2.1].

Step 2: Equate to 0 (Null Factor Law).

Step 3: Find the roots or solution.

Method 3: Quadratic Formula

Step 1: Determine a, b and c.

Step 2: Substitute to quadratic formula to find the roots/solution.

edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_008_quadratic formula-08.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_007_quadratic formula-07.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_010_roots of a quadratic equation-10.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_011_properties of quadratic graph-11.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_012_positive quadratic and negative quadratic-12.png

The part of the quadratic formula b2 – 4ac is called the discriminant.

The discriminant can be used to identify whether the roots are real or unreal.

edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_013_types of discriminant-13.png

1.2.3 Simple examples involving functions of the roots of a quadratic equation

edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_009_roots of a quadratic equation-09.png

Important notes:

(a+b)2 = a2 + b2 + 2ab → a2 + b2 = (a+b)2 – 2ab

(a+b)3 = a3 + b3 + 3ab(a+b) → a3 + b3 = (a+b)3 – 3ab(a+b)

Back
Next
1. Further Pure Mathematics Notes

1.1 Logarithmic Functions and Indices

1.2 The Quadratic Function

1.3 Identities and Inequalities

1.4 Graphs

1.5 Series

1.6 The Binomial Series

1.7 Scalar and Vector Quantities

1.8 Rectangular Cartesian Coordinates

1.9 Calculus

1.10 Trigonometry

Start Your Success Story Today

  • enquiries@studiaacademy.com
  • (+852) 5487 8448
  • 1201B, Tower 1, Admiralty Center,

    18 Harcourt Road, Admiralty, Hong Kong
  • studiaacademy
  • studiaeshop
  • About Studia
  • Getting to Studia
  • Studia School
  • Studia Tutoring
  • Studia Consultation
  • Studia Workshop
  • Studia Care
  • Studia Shop
  • Studia Resources
  • Studia Blog
  • Studia Platform

© 2025 Studia Academy. All rights reserved.

  • Terms of Use
  • Privacy Policy

Contact Studia

Please fill out the form below, and we’ll get back to you as soon as possible.