REVISION NOTES

IGCSE Edexcel Further Pure Mathematics

Home / Resources / IGCSE / Further Pure Mathematics / Revision Notes / 1.2 The Quadratic Function
a

1.2 The Quadratic Function

edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_014_the quadratic function-14.png

quadratic function has the form ax2 + bx + c where a, b and c are constants and a is not 0.

1.2.1 The manipulation of quadratic expressions

Type 1: Factorisation

Factorisation involves writing the quadratic expression of x2+ bx + c in the form (x + p)(x + q).

edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_001_factorising-01.png

Type 2: Completing the Square

Completing the Square involves writing the expression x2 + bx + c in the form (x + p)2 + q.

edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_002_completing the square (a = 1)-02.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_003_completing the square (a = 1)-03.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_004_completing the square (a = 1)-04.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_005_completing the square (a ≠ 1)-05.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_006_completing the square (a ≠ 1)-06.png

1.2.2 The roots of a quadratic equation

Method 1: Solve by Factorisation

Step 1: Factorise the quadratic equation [See 1.2.1].

Step 2: Equate to 0 (Null Factor Law).

Step 3: Find the roots or solution.

Method 2: Solve by Completing the Square

Step 1: Complete the Square [See 1.2.1].

Step 2: Equate to 0 (Null Factor Law).

Step 3: Find the roots or solution.

Method 3: Quadratic Formula

Step 1: Determine a, b and c.

Step 2: Substitute to quadratic formula to find the roots/solution.

edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_008_quadratic formula-08.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_007_quadratic formula-07.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_010_roots of a quadratic equation-10.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_011_properties of quadratic graph-11.png
edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_012_positive quadratic and negative quadratic-12.png

The part of the quadratic formula b2 – 4ac is called the discriminant.

The discriminant can be used to identify whether the roots are real or unreal.

edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_013_types of discriminant-13.png

1.2.3 Simple examples involving functions of the roots of a quadratic equation

edexcel_igcse_further pure maths_fpm_topic 02_the quadratic function_009_roots of a quadratic equation-09.png

Important notes:

(a+b)2 = a2 + b2 + 2ab → a2 + b2 = (a+b)2 – 2ab

(a+b)3 = a3 + b3 + 3ab(a+b) → a3 + b3 = (a+b)3 – 3ab(a+b)